
1

TEXTUAL ANALYSIS WITH R

1. Introduction

The objective of this practice is to provide students with a global vision of textual analysis.

Specifically, data from the Author Profiling task of the PAN in the CLEF will be used to

construct a classifier that discriminates authors by gender and variety of language, according

to what they write.

To carry out the practice, R 3.4.0 and the following libraries are required:

● caret: machine learning

● qdap: natural language processing

● tm: text mining

● splitstackshape: data frame manipulation

● e1071: auxiliary statistical functions

● kernlab: support vector machine kernels

● readr: auxiliary functions to read files

In this practice we will build a representation-based bag of words weighted with absolute

frequencies, taking the 1,000 most frequent words from the training corpus. We will

preprocess the text to pass it to lowercase, eliminate numbers and punctuation marks and

eliminate empty words.

2. Dataset

This section describes the dataset.

2.1. Dataset construction methodology

The following methodology has been followed to collect the data:

Step 1. Selection of languages and varieties of language

The following languages and their varieties are selected:

▪ English: Australia, Canada, Great Britain, Ireland, New Zealand, United States

▪ Spanish: Argentina, Chile, Colombia, Spain, Mexico, Peru, Venezuela

▪ Portuguese: Brazil, Portugal

▪ Arabic: Egypt, Gulf, Levantine, Maghreb

The selection has been made following the state of the art. For the Arabic we also selected

the Iraqi, which we had to discard since it did not have enough tweets.

2

Step 2. Retrieve tweets by region

For each variety, select the capitals of the region where the variety is used. Specifically:

Language Variety City

EN Australia Canberra, Sydney

 Canada Toronto, Vancouver

 Great Britain London, Edinburgh, Cardiff

 Ireland Dublin

 New Zealand Wellington

 United States Washington

ES Argentina Buenos Aires

 Chile Santiago

 Colombia Bogota

 Mexico Mexico

 Peru Lima

 Spain Madrid

 Venezuela Caracas

PT Brazil Brasilea

 Portugal Lisbon

AR Egypt Cairo

 Gulf Kuwait, Riyadh, Abu Dhabi, Doha, Manama, Mascate,
Sana’a

 Levantine Damascus, Beirut, Amman, Jerusalem

 Maghrebi Rabat, Algiers, Tunis, Tripoli

Tweets are retrieved within a 10km radius from the center of the previous cities.

Step 3. Selection of authors

Unique authors are identified in the previous dataset. For each author, their timeline is

retrieved, which provides meta-data such as the following:

▪ Full name

▪ Location, as a text description or place names

3

▪ Language identified by the author, which may not correspond to the language in which

he writes the tweets

Step 4. Preselection of authors

For each author we make sure that it contains at least 100 tweets fulfilling the following

conditions:

▪ Tweets are not retweets

▪ The tweets are written in the corresponding language

Step 5. Annotation of the language variety

An author writes down with the corresponding variety if he complies that:

▪ It has recovered in the corresponding region

▪ At least 80% of the locations provided as meta-data of their tweets matches one of the

toponyms of the corresponding region.

NOTE: The assumption is that a person living in a region uses the variety of the said region.

This implies two other assumptions:

▪ We assume that a person lives in a region when their location throughout their timeline

reflects that location. The timeline has up to 3,200 tweets per author, which implies in

most cases a couple of years, so we consider feasible the assumption.

▪ We assume that language in social media is dynamic and easily influenced, against the

more formal language used for example in the press. This means that it reflects the

current and daily use of language, and how this reflects the basic social and personality

processes of the author who uses it. In this sense, if there is a high number of

immigrants in a region, they can influence the regional use of language, and this can

give a valuable clue to detect the possible location of a person

Step 6. Gender annotation

The gender annotation is done in two steps:

▪ Automatically, by using a dictionary of proper names (ambiguous names are discarded)

▪ Manually, visiting each profile and looking at the photo, description, etc.

Step 6. Final dataset selection

The final dataset is balanced in the number of tweets by variety and by gender, as well as by

the number of tweets per author.

▪ 500 tweets by gender and variety.

▪ 100 tweets per author

▪ The dataset is divided into training / test following the 80/20 ratio

4

2.2. Official Dataset of PAN’17

ENGLISH SPANISH PORTUGUESE ARABIC

● Australia
● Canada
● Great Britain
● Ireland
● New Zealand
● United States

● Argentina
● Chile
● Colombia
● Mexico
● Peru
● Spain
● Venezuela

● Brazil
● Portugal

● Egypt
● Gulf
● Levantine
● Maghrebi

▪ 500 authors per gender and language variety

▪ 300 training / 200 tests

▪ 100 tweets per author

2.3. Subset of the course

From the previous dataset, we selected the English training subset:

ENGLISH

● Australia
● Canada
● Great Britain
● Ireland
● New Zealand
● United States

▪ 300 authors by gender and language variety (from the original training set)

▪ 200 training / 100 tests

▪ 100 tweets per author

The dataset is available at:

https://s3-eu-west-1.amazonaws.com/autoritas.academy/pan-ap17-training.zip

2.4. The format of the files

Once the dataset is decompressed, the structure is as follows:

▪ A couple of folders: training and test

▪ In each folder:

✓ A truth.txt file with the truth information.

✓ One xml file per author.Truth.txt

✓ Id:::gender:::variety

https://s3-eu-west-1.amazonaws.com/autoritas.academy/pan-ap17-training.zip

5

✓ The name of each xml file corresponds to an id in the file truth.txt

✓ Each xml file is an author with a set of 100 tweets with the following structure:

3. Building the model

This section describes how to build the machine learning model through a bag of word

based representation.

You can download the code snippets from the following url:

https://drive.google.com/file/d/1BgdBl7slClO3eAXlIiTvThUPhFGguhLj/view?usp=sharing

It is suggested to follow the following steps, although the fragment codes are copied and

executed.

3.1. Library R

The following libraries must be included (after installation):

library(qdap)

library(XML)

library(tm)

library(splitstackshape)

library(caret)

https://drive.google.com/file/d/1BgdBl7slClO3eAXlIiTvThUPhFGguhLj/view?usp=sharing

6

3.2. Setting global parameters

n <- 10 # Number of words in the vocabulary. Usually used 1000 or 10000

k <- 3 # Number of folds in cross-validation. Usually used 10

r <- 1 # Number of repeats in cross-validation. Usually used 3

path_training <- "HERE YOU SHOULD PUT YOUR PATH/training"

path_test <- "HERE YOU SHOULD PUT YOUR PATH/test"

lang <- "en"

3.3. Getting the vocabulary

The following code is encapsulated within the GenerateVocabulary function:

GenerateVocabulary: Given a corpus (training set), obtains the n most frequent

words

GenerateVocabulary <- function(path, n = 1000, lowcase = TRUE, punctuations = TRUE,

numbers = TRUE, whitespaces = TRUE, swlang = "", swlist = "", verbose = TRUE) {

 setwd(path)

 # Reading corpus list of files

 files = list.files(pattern="*.xml")

 # Reading files contents and concatenating into the corpus.raw variable

 corpus.raw <- NULL

 i <- 0

 for (file in files) {

 xmlfile <- xmlTreeParse(file, useInternalNodes = TRUE)

 corpus.raw <- c(corpus.raw, xpathApply(xmlfile, "//document", function(x) xmlValue(x)))

 i <- i + 1

 if (verbose) print(paste(i, " ", file))

 }

 # Preprocessing the corpus

 corpus.preprocessed <- corpus.raw

 if (lowcase) {

 if (verbose) print("Tolower...")

 corpus.preprocessed <- tolower(corpus.preprocessed)

 }

 if (punctuations) {

 if (verbose) print("Removing punctuations...")

 corpus.preprocessed <- removePunctuation(corpus.preprocessed)

 }

7

 if (numbers) {

 if (verbose) print("Removing numbers...")

 corpus.preprocessed <- removeNumbers(corpus.preprocessed)

 }

 if (whitespaces) {

 if (verbose) print("Stripping whitestpaces...")

 corpus.preprocessed <- stripWhitespace(corpus.preprocessed)

 }

 if (swlang!="") {

 if (verbose) print(paste("Removing stopwords for language ", swlang , "..."))

 corpus.preprocessed <- removeWords(corpus.preprocessed, stopwords(swlang))

 }

 if (swlist!="") {

 if (verbose) print("Removing provided stopwords...")

 corpus.preprocessed <- removeWords(corpus.preprocessed, swlist)

 }

 # Generating the vocabulary as the n most frequent terms

 if (verbose) print("Generating frequency terms")

 corpus.frequentterms <- freq_terms(corpus.preprocessed, n)

 if (verbose) plot(corpus.frequentterms)

 return (corpus.frequentterms)

}

Once the function has been defined, it should be called as follows:

vocabulary <- GenerateVocabulary(path_training, n, swlang=lang)

3.4. Generating the Bag of Word for the variety task in the training subset

The following code is encapsulated in the GenerateBoW function.

GenerateBoW <- function(path, vocabulary, n = 100000, lowcase = TRUE, punctuations =

TRUE, numbers = TRUE, whitespaces = TRUE, swlang = "", swlist = "", class="variety",

verbose = TRUE) {

 setwd(path)

 # Reading the truth file

 truth <- read.csv("truth.txt", sep=":", header=FALSE)

 truth <- truth[,c(1,4,7)]

 colnames(truth) <- c("author", "gender", "variety")

 i <- 0

 bow <- NULL

8

 # Reading the list of files in the corpus

 files = list.files(pattern="*.xml")

 for (file in files) {

 # Obtaining truth information for the current author

 author <- gsub(".xml", "", file)

 variety <- truth[truth$author==author,"variety"]

 gender <- truth[truth$author==author,"gender"]

 # Reading contents for the current author

 xmlfile <- xmlTreeParse(file, useInternalNodes = TRUE)

 txtdata <- xpathApply(xmlfile, "//document", function(x) xmlValue(x))

 # Preprocessing the text

 if (lowcase) {

 txtdata <- tolower(txtdata)

 }

 if (punctuations) {

 txtdata <- removePunctuation(txtdata)

 }

 if (numbers) {

 txtdata <- removeNumbers(txtdata)

 }

 if (whitespaces) {

 txtdata <- stripWhitespace(txtdata)

 }

Building the vector space model. For each word in the vocabulary, it obtains the

frequency of occurrence in the current author.

 line <- author

 freq <- freq_terms(txtdata, n)

 for (word in vocabulary$WORD) {

 thefreq <- 0

 if (length(freq[freq$WORD==word,"FREQ"])>0) {

 thefreq <- freq[freq$WORD==word,"FREQ"]

 }

 line <- paste(line, ",", thefreq, sep="")

 }

 # Concatenating the corresponding class: variety or gender

 if (class=="variety") {

 line <- paste(variety, ",", line, sep="")

 } else {

 line <- paste(gender, ",", line, sep="")

 }

9

 # New row in the vector space model matrix

 bow <- rbind(bow, line)

 i <- i + 1

 if (verbose) {

 if (class=="variety") {

 print(paste(i, author, variety))

 } else {

 print(paste(i, author, gender))

 }

 }

 }

 return (bow)

}

Once the function is defined, it should be called as follows:

GENERATING THE BOW FOR THE GENDER SUBTASK FOR THE TRAINING SET

bow_training_gender <- GenerateBoW(path_training, vocabulary, class="gender")

GENERATING THE BOW FOR THE GENDER SUBTASK FOR THE TEST SET

bow_test_gender <- GenerateBoW(path_test, vocabulary, class="gender")

GENERATING THE BOW FOR THE VARIETY SUBTASK FOR THE TRAINING SET

bow_training_variety <- GenerateBoW(path_training, vocabulary, class="variety")

GENERATING THE BOW FOR THE VARIETY SUBTASK FOR THE TEST SET

bow_test_variety <- GenerateBoW(path_test, vocabulary, class="variety")

3.5. Preparing the vector space model for the training and test subsets

We must do this twice, depending on the task (variety / gender):

PREPARING THE VECTOR SPACE MODEL FOR THE TRAINING SET

training_gender <- concat.split(bow_training_gender, "V1", ",")

training_gender <- cbind(training_gender[,2], training_gender[,4:ncol(training_gender)])

names(training_gender)[1] <- "theclass"

Preparing the vector space model and truth for the test set

test_gender <- concat.split(bow_test_gender, "V1", ",")

truth_gender <- unlist(test_gender[,2])

test_gender <- test_gender[,4:ncol(test_gender)]

PREPARING THE VECTOR SPACE MODEL FOR THE TRAINING SET

training_variety <- concat.split(bow_training_variety, "V1", ",")

training_variety <- cbind(training_variety[,2], training_variety[,4:ncol(training_variety)])

10

names(training_variety)[1] <- "theclass"

Preparing the vector space model and truth for the test set

test_variety <- concat.split(bow_test_variety, "V1", ",")

truth_variety <- unlist(test_variety[,2])

test_variety <- test_variety[,4:ncol(test_variety)]

3.6. Learning an SVM model

With the following lines you learn an SVM model and it is evaluated with cross-validation in

k-folds, and we can print the results of the evaluation:

Learning a SVM and evaluating it with k-fold cross-validation

train_control <- trainControl(method="repeatedcv", number = k , repeats = r)

model_SVM_gender <- train(theclass~., data= training_gender, trControl = train_control,

method = "svmLinear")

print(model_SVM_gender)

Learning a SVM and evaluating it with 10-fold cross-validation

train_control <- trainControl(method="repeatedcv", number = k , repeats = r)

model_SVM_variety <- train(theclass~., data= training_variety, trControl = train_control,

method = "svmLinear")

print(model_SVM_variety)

And with the following lines, the SV model is learned with all the training without cross

evaluation (faster):

Learning a SVM with the whole training set and without evaluating it

train_control <- trainControl(method="none")

model_SVM_gender <- train(theclass~., data= training_gender, trControl = train_control,

method = "svmLinear")

Learning a SVM with the whole training set and without evaluating it

train_control <- trainControl(method="none")

model_SVM_variety <- train(theclass~., data= training_variety, trControl = train_control,

method = "svmLinear")

3.7. Applying the model to predict the test

pred_SVM_gender <- predict(model_SVM_gender, test_gender)

pred_SVM_variety <- predict(model_SVM_variety, test_variety)

3.8. Evaluating predictions

confusionMatrix(pred_SVM_gender, truth_gender)

confusionMatrix(pred_SVM_variety, truth_variety)

11

3.9. Joint evaluation: when it is correct in both gender and variety

joint <- data.frame(pred_SVM_gender, truth_gender, pred_SVM_variety, truth_variety)

joint <- cbind(joint, ifelse(joint[,1]==joint[,2],1,0), ifelse(joint[,3]==joint[,4],1,0))

joint <- cbind(joint, joint[,5]*joint[,6])

colnames(joint) <- c("pgender", "tgender", "pvariety", "tvariety", "gender", "variety", "joint")

accgender <- sum(joint$gender)/nrow(joint)

accvariety <- sum(joint$variety)/nrow(joint)

accjoint <- sum(joint$joint)/nrow(joint)

print(paste(accgender, accvariety, accjoint, time.taken))

* time.taken is calculated as the difference in times from the beginning and end of the

execution of the script.

4. Result

The following table shows the results for both subtasks in cross validation and evaluating

with the test subset:

APPROACH GENDER VARIETY JOINT

Best PAN’17 0.8233 0.8988 0.7429

N = 10 0.5875 0.2608 0.1442

N = 50 0.6850 0.3167 0.2142

N = 100 0.7375 0.3383 0.2525

N = 500 0.7358 0.5717 0.4175

N = 1,000 0.6983 0.6167 0.4325

N = 5,000 0.7550 0.7275 0.5517

N = 10,000 Impossible with RStudio

12

5. Conclusions

We have applied the concepts of learning in text analysis with a practical example. This

example is part of the task of Author Profiling at PAN. The results show that the bag of

words allows to obtain good precision with a simple approximation, although more

elaborated representations are necessary to be competitive with the state of the art.

Paolo Rosso, PhD.

prosso@dsic.upv.es

Francisco Rangel Pardo, PhD.

francisco.rangel@autoritas.es

Edwin Puertas, PhD Student

Edwin.puertas@javeriana.edu.co

mailto:prosso@dsic.upv.es
mailto:francisco.rangel@autoritas.es
mailto:Edwin.puertas@javeriana.edu.co

