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TEXTUAL ANALYSIS WITH R 
 

1. Introduction 

The objective of this practice is to provide students with a global vision of textual analysis. 

Specifically, data from the Author Profiling task of the PAN in the CLEF will be used to 

construct a classifier that discriminates authors by gender and variety of language, according 

to what they write. 

 

To carry out the practice, R 3.4.0 and the following libraries are required: 

 

● caret: machine learning  

● qdap: natural language processing 

● tm: text mining  

● splitstackshape: data frame manipulation 

● e1071: auxiliary statistical functions 

● kernlab: support vector machine kernels 

● readr: auxiliary functions to read files 

 

In this practice we will build a representation-based bag of words weighted with absolute 

frequencies, taking the 1,000 most frequent words from the training corpus. We will 

preprocess the text to pass it to lowercase, eliminate numbers and punctuation marks and 

eliminate empty words. 

2. Dataset 

This section describes the dataset. 

2.1. Dataset construction methodology 

 

The following methodology has been followed to collect the data: 

 

Step 1. Selection of languages and varieties of language 

 

The following languages and their varieties are selected: 

 

▪ English: Australia, Canada, Great Britain, Ireland, New Zealand, United States 

▪ Spanish: Argentina, Chile, Colombia, Spain, Mexico, Peru, Venezuela 

▪ Portuguese: Brazil, Portugal 

▪ Arabic: Egypt, Gulf, Levantine, Maghreb 

 

The selection has been made following the state of the art. For the Arabic we also selected 

the Iraqi, which we had to discard since it did not have enough tweets. 
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Step 2. Retrieve tweets by region 

 

For each variety, select the capitals of the region where the variety is used. Specifically: 

 

Language Variety City 

EN Australia Canberra, Sydney 

 Canada Toronto, Vancouver 

 Great Britain London, Edinburgh, Cardiff 

 Ireland Dublin 

 New Zealand Wellington 

 United States Washington 

ES Argentina Buenos Aires 

 Chile Santiago 

 Colombia Bogota 

 Mexico Mexico 

 Peru Lima 

 Spain Madrid 

 Venezuela Caracas 

PT Brazil Brasilea 

 Portugal Lisbon 

AR Egypt Cairo 

 Gulf Kuwait, Riyadh, Abu Dhabi, Doha, Manama, Mascate, 
Sana’a 

 Levantine Damascus, Beirut, Amman, Jerusalem 

 Maghrebi Rabat, Algiers, Tunis, Tripoli 

 

Tweets are retrieved within a 10km radius from the center of the previous cities. 

 

Step 3. Selection of authors 

 

Unique authors are identified in the previous dataset. For each author, their timeline is 

retrieved, which provides meta-data such as the following: 

 

▪ Full name 

▪ Location, as a text description or place names 
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▪ Language identified by the author, which may not correspond to the language in which 

he writes the tweets 

 

Step 4. Preselection of authors 

 

For each author we make sure that it contains at least 100 tweets fulfilling the following 

conditions: 

 

▪ Tweets are not retweets 

▪ The tweets are written in the corresponding language 

 

Step 5. Annotation of the language variety 

 

An author writes down with the corresponding variety if he complies that: 

 

▪ It has recovered in the corresponding region 

▪ At least 80% of the locations provided as meta-data of their tweets matches one of the 

toponyms of the corresponding region. 

 

NOTE: The assumption is that a person living in a region uses the variety of the said region. 

This implies two other assumptions: 

 

▪ We assume that a person lives in a region when their location throughout their timeline 

reflects that location. The timeline has up to 3,200 tweets per author, which implies in 

most cases a couple of years, so we consider feasible the assumption. 

 

▪ We assume that language in social media is dynamic and easily influenced, against the 

more formal language used for example in the press. This means that it reflects the 

current and daily use of language, and how this reflects the basic social and personality 

processes of the author who uses it. In this sense, if there is a high number of 

immigrants in a region, they can influence the regional use of language, and this can 

give a valuable clue to detect the possible location of a person 

 

Step 6. Gender annotation 

 

The gender annotation is done in two steps: 

 

▪ Automatically, by using a dictionary of proper names (ambiguous names are discarded) 

▪ Manually, visiting each profile and looking at the photo, description, etc. 

 

Step 6. Final dataset selection 

 

The final dataset is balanced in the number of tweets by variety and by gender, as well as by 

the number of tweets per author. 

▪ 500 tweets by gender and variety. 

▪ 100 tweets per author 

▪ The dataset is divided into training / test following the 80/20 ratio 
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2.2. Official Dataset of PAN’17 

 

ENGLISH SPANISH PORTUGUESE ARABIC 

● Australia 
● Canada 
● Great Britain 
● Ireland 
● New Zealand 
● United States 

● Argentina 
● Chile 
● Colombia 
● Mexico 
● Peru 
● Spain 
● Venezuela 

● Brazil 
● Portugal 

● Egypt 
● Gulf 
● Levantine 
● Maghrebi 

 

 

 

▪ 500 authors per gender and language variety 

▪ 300 training / 200 tests 

▪ 100 tweets per author 

2.3. Subset of the course 

From the previous dataset, we selected the English training subset: 

 

ENGLISH 

● Australia 
● Canada 
● Great Britain 
● Ireland 
● New Zealand 
● United States 

 

▪ 300 authors by gender and language variety (from the original training set) 

▪ 200 training / 100 tests 

▪ 100 tweets per author 

 

The dataset is available at: 

 

https://s3-eu-west-1.amazonaws.com/autoritas.academy/pan-ap17-training.zip 

2.4. The format of the files 

Once the dataset is decompressed, the structure is as follows: 

 

▪ A couple of folders: training and test 

▪ In each folder: 

✓ A truth.txt file with the truth information. 

✓ One xml file per author.Truth.txt 

✓ Id:::gender:::variety 

https://s3-eu-west-1.amazonaws.com/autoritas.academy/pan-ap17-training.zip
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✓ The name of each xml file corresponds to an id in the file truth.txt 

✓ Each xml file is an author with a set of 100 tweets with the following structure: 

 

 

3. Building the model 

This section describes how to build the machine learning model through a bag of word 

based representation. 

 

You can download the code snippets from the following url: 

 

https://drive.google.com/file/d/1BgdBl7slClO3eAXlIiTvThUPhFGguhLj/view?usp=sharing 

 

It is suggested to follow the following steps, although the fragment codes are copied and 

executed. 

 

3.1. Library R 

 

The following libraries must be included (after installation): 

 

library(qdap) 

library(XML) 

library(tm) 

library(splitstackshape) 

library(caret) 

https://drive.google.com/file/d/1BgdBl7slClO3eAXlIiTvThUPhFGguhLj/view?usp=sharing
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3.2. Setting global parameters 

 

n <- 10      # Number of words in the vocabulary. Usually used 1000 or 10000 

k <- 3        # Number of folds in cross-validation. Usually used 10 

r <- 1        # Number of repeats in cross-validation. Usually used 3 

path_training <- "HERE YOU SHOULD PUT YOUR PATH/training" 

path_test <- "HERE YOU SHOULD PUT YOUR PATH/test" 

lang <- "en" 

  

 

3.3. Getting the vocabulary 

 

The following code is encapsulated within the GenerateVocabulary function: 

 

# GenerateVocabulary: Given a corpus (training set), obtains the n most frequent 

words 

 

GenerateVocabulary <- function(path, n = 1000, lowcase = TRUE, punctuations = TRUE, 

numbers = TRUE, whitespaces = TRUE, swlang = "", swlist = "", verbose = TRUE) { 

  setwd(path) 

   

  # Reading corpus list of files 

  files = list.files(pattern="*.xml") 

   

  # Reading files contents and concatenating into the corpus.raw variable 

  corpus.raw <- NULL 

  i <- 0 

  for (file in files) { 

    xmlfile <- xmlTreeParse(file, useInternalNodes = TRUE) 

    corpus.raw <- c(corpus.raw, xpathApply(xmlfile, "//document", function(x) xmlValue(x))) 

    i <- i + 1 

    if (verbose) print(paste(i, " ", file)) 

  } 

   

  # Preprocessing the corpus 

  corpus.preprocessed <- corpus.raw 

   

  if (lowcase) { 

    if (verbose) print("Tolower...") 

    corpus.preprocessed <- tolower(corpus.preprocessed) 

  } 

   

  if (punctuations) { 

    if (verbose) print("Removing punctuations...") 

    corpus.preprocessed <- removePunctuation(corpus.preprocessed) 

  } 
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  if (numbers) { 

    if (verbose) print("Removing numbers...") 

    corpus.preprocessed <- removeNumbers(corpus.preprocessed) 

  } 

   

  if (whitespaces) { 

    if (verbose) print("Stripping whitestpaces...") 

    corpus.preprocessed <- stripWhitespace(corpus.preprocessed) 

  } 

   

  if (swlang!="") { 

    if (verbose) print(paste("Removing stopwords for language ", swlang , "...")) 

    corpus.preprocessed <- removeWords(corpus.preprocessed, stopwords(swlang)) 

  } 

   

  if (swlist!="") { 

    if (verbose) print("Removing provided stopwords...") 

    corpus.preprocessed <- removeWords(corpus.preprocessed, swlist) 

  } 

   

  # Generating the vocabulary as the n most frequent terms 

  if (verbose) print("Generating frequency terms") 

  corpus.frequentterms <- freq_terms(corpus.preprocessed, n) 

  if (verbose) plot(corpus.frequentterms) 

   

  return (corpus.frequentterms) 

} 

 

Once the function has been defined, it should be called as follows: 

 

vocabulary <- GenerateVocabulary(path_training, n, swlang=lang) 

 

3.4. Generating the Bag of Word for the variety task in the training subset 

 

The following code is encapsulated in the GenerateBoW function. 

 

GenerateBoW <- function(path, vocabulary, n = 100000, lowcase = TRUE, punctuations = 

TRUE, numbers = TRUE, whitespaces = TRUE, swlang = "", swlist = "", class="variety", 

verbose = TRUE) { 

  setwd(path) 

   

  # Reading the truth file 

  truth <- read.csv("truth.txt", sep=":", header=FALSE) 

  truth <- truth[,c(1,4,7)] 

  colnames(truth) <- c("author", "gender", "variety") 

   

  i <- 0 

  bow <- NULL 



8 
 

  # Reading the list of files in the corpus 

  files = list.files(pattern="*.xml") 

  for (file in files) { 

    # Obtaining truth information for the current author 

    author <- gsub(".xml", "", file) 

    variety <- truth[truth$author==author,"variety"] 

    gender <- truth[truth$author==author,"gender"] 

     

    # Reading contents for the current author 

    xmlfile <- xmlTreeParse(file, useInternalNodes = TRUE) 

    txtdata <- xpathApply(xmlfile, "//document", function(x) xmlValue(x)) 

     

    # Preprocessing the text 

    if (lowcase) { 

      txtdata <- tolower(txtdata) 

    } 

     

    if (punctuations) { 

      txtdata <- removePunctuation(txtdata) 

    } 

     

    if (numbers) { 

      txtdata <- removeNumbers(txtdata) 

    } 

     

    if (whitespaces) { 

      txtdata <- stripWhitespace(txtdata) 

    } 

     

# Building the vector space model. For each word in the vocabulary, it obtains the 

frequency of occurrence in the current author. 

 

    line <- author 

    freq <- freq_terms(txtdata, n) 

    for (word in vocabulary$WORD) { 

      thefreq <- 0 

      if (length(freq[freq$WORD==word,"FREQ"])>0) { 

        thefreq <- freq[freq$WORD==word,"FREQ"] 

      } 

      line <- paste(line, ",", thefreq, sep="") 

    } 

     

    # Concatenating the corresponding class: variety or gender 

    if (class=="variety") { 

      line <- paste(variety, ",", line, sep="") 

    } else { 

      line <- paste(gender, ",", line, sep="") 

    } 
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    # New row in the vector space model matrix 

    bow <- rbind(bow, line) 

    i <- i + 1 

     

    if (verbose) { 

      if (class=="variety") { 

        print(paste(i, author, variety)) 

      } else { 

        print(paste(i, author, gender)) 

      } 

    } 

  } 

   

  return (bow) 

} 

 

Once the function is defined, it should be called as follows: 

 

# GENERATING THE BOW FOR THE GENDER SUBTASK FOR THE TRAINING SET 

bow_training_gender <- GenerateBoW(path_training, vocabulary, class="gender") 

 

# GENERATING THE BOW FOR THE GENDER SUBTASK FOR THE TEST SET 

bow_test_gender <- GenerateBoW(path_test, vocabulary, class="gender") 

 

# GENERATING THE BOW FOR THE VARIETY SUBTASK FOR THE TRAINING SET 

bow_training_variety <- GenerateBoW(path_training, vocabulary, class="variety") 

 

# GENERATING THE BOW FOR THE VARIETY SUBTASK FOR THE TEST SET 

bow_test_variety <- GenerateBoW(path_test, vocabulary, class="variety") 

 

3.5. Preparing the vector space model for the training and test subsets 

 

We must do this twice, depending on the task (variety / gender): 

 

# PREPARING THE VECTOR SPACE MODEL FOR THE TRAINING SET 

training_gender <- concat.split(bow_training_gender, "V1", ",") 

training_gender <- cbind(training_gender[,2], training_gender[,4:ncol(training_gender)]) 

names(training_gender)[1] <- "theclass" 

 

# Preparing the vector space model and truth for the test set 

test_gender <- concat.split(bow_test_gender, "V1", ",") 

truth_gender <- unlist(test_gender[,2]) 

test_gender <- test_gender[,4:ncol(test_gender)] 

 

# PREPARING THE VECTOR SPACE MODEL FOR THE TRAINING SET 

training_variety <- concat.split(bow_training_variety, "V1", ",") 

training_variety <- cbind(training_variety[,2], training_variety[,4:ncol(training_variety)]) 
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names(training_variety)[1] <- "theclass" 

 

# Preparing the vector space model and truth for the test set 

test_variety <- concat.split(bow_test_variety, "V1", ",") 

truth_variety <- unlist(test_variety[,2]) 

test_variety <- test_variety[,4:ncol(test_variety)] 

 

 

3.6. Learning an SVM model 

 

With the following lines you learn an SVM model and it is evaluated with cross-validation in 

k-folds, and we can print the results of the evaluation: 

 

# Learning a SVM and evaluating it with k-fold cross-validation 

train_control <- trainControl( method="repeatedcv", number = k , repeats = r) 

model_SVM_gender <- train( theclass~., data= training_gender, trControl = train_control, 

method = "svmLinear") 

print(model_SVM_gender) 

 

# Learning a SVM and evaluating it with 10-fold cross-validation 

train_control <- trainControl( method="repeatedcv", number = k , repeats = r) 

model_SVM_variety <- train( theclass~., data= training_variety, trControl = train_control, 

method = "svmLinear") 

print(model_SVM_variety) 

 

And with the following lines, the SV model is learned with all the training without cross 

evaluation (faster): 

 

# Learning a SVM with the whole training set and without evaluating it 

train_control <- trainControl(method="none") 

model_SVM_gender <- train( theclass~., data= training_gender, trControl = train_control, 

method = "svmLinear") 

 

# Learning a SVM with the whole training set and without evaluating it 

train_control <- trainControl(method="none") 

model_SVM_variety <- train( theclass~., data= training_variety, trControl = train_control, 

method = "svmLinear") 

 

3.7. Applying the model to predict the test 

 

pred_SVM_gender <- predict(model_SVM_gender, test_gender) 

pred_SVM_variety <- predict(model_SVM_variety, test_variety) 

 

3.8. Evaluating predictions 

 

confusionMatrix(pred_SVM_gender, truth_gender) 

confusionMatrix(pred_SVM_variety, truth_variety) 
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3.9. Joint evaluation: when it is correct in both gender and variety 

 

 

joint <- data.frame(pred_SVM_gender, truth_gender, pred_SVM_variety, truth_variety) 

joint <- cbind(joint, ifelse(joint[,1]==joint[,2],1,0), ifelse(joint[,3]==joint[,4],1,0)) 

joint <- cbind(joint, joint[,5]*joint[,6]) 

colnames(joint) <- c("pgender", "tgender", "pvariety", "tvariety", "gender", "variety", "joint") 

 

accgender <- sum(joint$gender)/nrow(joint) 

accvariety <- sum(joint$variety)/nrow(joint) 

accjoint <- sum(joint$joint)/nrow(joint) 

 

print(paste(accgender, accvariety, accjoint, time.taken)) 

 

* time.taken is calculated as the difference in times from the beginning and end of the 

execution of the script. 

4. Result 

The following table shows the results for both subtasks in cross validation and evaluating 

with the test subset: 

 

APPROACH GENDER VARIETY JOINT 

Best PAN’17 0.8233 0.8988 0.7429 

N = 10 0.5875 0.2608 0.1442 

N = 50 0.6850 0.3167 0.2142 

N = 100 0.7375 0.3383 0.2525 

N = 500 0.7358 0.5717 0.4175 

N = 1,000 0.6983 0.6167 0.4325 

N = 5,000 0.7550 0.7275 0.5517 

N = 10,000 Impossible with RStudio 
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5. Conclusions 

We have applied the concepts of learning in text analysis with a practical example. This 

example is part of the task of Author Profiling at PAN. The results show that the bag of 

words allows to obtain good precision with a simple approximation, although more 

elaborated representations are necessary to be competitive with the state of the art. 
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